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Appendix 111

III.1 Strain Energy Release Rate

In this analysis, a delamination between belt and core sections is assumed to grow
parallel to the belt direction in the tapered and uniform sections. These delamina-
tions in each section are denoted by a and b respectively. The core section in the
taper portion is modelled by two equivalent sublaminates. The stiffness properties
are smeared to obtain the effective cracked and uncracked stiffnesses which are des-
ignated by A, and 4. as shown in Figure III.1. These stiffnesses change from one
ply drop group to another with crack growth a by experiencing a sudden change
at discrete locations. Therefore 4, and A, can be represented in three consecutive

regions as follows,

o Region 1: 0 <a <!

d+3l—-a .
Au = ._d_+_L_+_,l_+l_:g (LII].)
ABD 4y Az As
A = A, (111.2)
e Region 2: [ < a < 2l
A, = 2o (I11.3)
Aspp ' A Az
a+b
4 = = e (111.4)
A2 As



e Region 3: 2l < a < 3l

d+3l—a
Ae = T
App A,y
a+b
A = a2l I I+b
& tnt L

where
h = ply thickness
d = length of uniform thick portion
[ = distance between two consecutive ply drop locations
41 = 6RQ® = 20Q° -
4, = 4hQ* + 21Q°
Az = 2RQ* +2RQ°
App = ThQ° + 2RQ*
Q° = @Q,; of a 0 degree ply
Q*® = @Qq; of a £45 degree ply

Geometry of the sublaminate model is shown in Figure (II1.1)

Also axial stiffnesses Ag, A, and AFr are given by

d+3l—a

d 3l—a
App + Agr

A =

3™

(IIL.5)

(IIL6)

(II1.7)
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Figure IIL.1: Geometry of the Sublaminate Model

Arp = A4, (II1.8)
A, = App (I11.9)
where
Apr =Taper belt stifiness
For a membrane behavior, equilibrium equations are reduced to
N,.=0 (I11.10)
and the displacement field is assumed to be
u(z,z) = U(z) (ITL.11)
and

w=10 (I11.12)



The constitutive relations are represented by
N =AU, » (IT1.13)

The stress and displacement fields, are determined based on the stiffnesses derived
in Equations(IIL.1-II1.9). In this model, load is shared by the core and the belt

portions according to their respective stiffness ratios

PAg
Pp=——— I11.14
PA
Pp= —F— II1.15
*T Ap+ Al (H1-12)

where P is half of the total axial load applied at the ends.
Using the Equations (II1.10), (II1.13), and the expressions for P; and P, from

Equations (III.14). (II1.15) the axial displacement at © = ¢ can be written as

_ PAge _ Pld+3l+b) (_,43 A_§>
* T A Ap+ A (Ap+ Auw) \Ap 4,
P(d+3l—a)< AB)
1- I11.16
(45 + A0) Am (I11.16)
_— PA,c +P(d+31+b)<é_£u_>
© 7 Ay(dp+A)) | (Ap+4u) A Ap
P(d+3l—a) ( Au> _
el by (I11.17)

where Apg; is the belt stiffness in the pop-off region as shown in Figure I11.1.
A three-dimensional transformation is required in order to estimate the effective

axial stiffness of the belt region Ag and Apg,. This is due to the belt layup and



the orientation of the different belt portions to the loading axis as shown in Figure
ITI.1. The three-dimensional transformation is presented in section IIL.3.
The tapered laminate is assumed to be fixed at-z = 0. Therefore the external

work done is given by
W = PUs + P,Us (I11.18)

Substitute from Equations (II1.14) through (III.17) into Equation (III.18) to get

w 1 A? A?
e o —d-3] ~ B 4 v A - y
Az A?
py [ =B 4 Zu ‘ .
+(a+ )(AB1-+ A)] (I1L.19)

The strain energy release rate G due to the external work done is determined
by

1 dW

C=spaa

(I11.20)

where A is the delamination surface area. G is calculated for delamination lengths
ranging from 0 to 60h. In the analysis, S2/SP250 Glass-Epoxy is used. Its properties
are given in Table III.1.

Table II1.1: Material Properties of S2/SP250 Glass-Epoxy

1
En; (MSI) | Egy (MSI) | Gz (MSI) | Gis (MSI) | Gz (MSI) | 242

7.3 2.1 0.87 0.5 0.5 0.275




I11.2 Interlaminar Stresses

In this part, an analysis for the interlaminar stresses in the belt-core interface in
the tapered section will is developed.

The simple analytical model assumes a beam model for the belt in the tapered
section which is shown in Figure II1.2 . Material and geometric discontinuities are
modelled as extensional k; and concentrated shear springs g; (i=1-4) as shown in
Figure II1.3. The resin pockets are assumed to be subjected primarily to shear stress
and they are represented by a distributed shear spring with a constant stiffness G.

The effect of the core is incorporated as elastic supports on the beam-belt model.

A minimum complementary potential energy formulation is used to estimate
the interlaminar stresses. The total complementary potential energy consists of

bending, shear and extensional energy contributions,

M€ =10, + 11, + T, + 10, (I11.21)

where II,, II,. Il,, II; represent bending, shear and extensional energy components

and energy stored in elastic springs, respectively. These are given as,

1 3 MP(s) o
I, = 5)y D, ds (111.22)
1 3 al(s)
I, == d [11.23
2 0 G1 s ( )
1 3 N%(s)
I. == d I11.24
2Je Ay (HL.24)

1 psc%s), R R: R R T® T! T! T?
O = = ds+ =L+ 24+ 24 A L 2 03 4 (11125
C=3d G BT Yo Tk Tk, T 2g T 29 29 T 2g, (LB
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Figure I11.2: Geometry of the Model
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Figure II1.3: Modelling of the Beam-Belt
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where R;, T; (1=1,2,3,4) are unknowns. The constant shear stress,c, due to resin
filler is an additional unknown. The total number of unknowns in this formulation

is nine. These unknowns are constrained by following equilibrium equations.

[4
Rl = —R3 - 2R4 + 2N12 + N22 - a(]vu - .Arzl) (111.26)
t
Rz = 2R3 + 3R4 - 3N12 + 5}(]\’11 - N21) (III.QT)
T1 = —T2 - T3 - T4 - 3Cl - Arlg + .]Vu (IH.ZQ)

where Ny;, N1z, N2 and N,, denote the components of the extensional load at two
ends of the belt section.
The bending moment, shear force and axial force in each of the three ply drop

regions are written as

o Region 1: 0<s <

t t '
M(s) = —Nps + %s + Res + Tag (IIL.29)

V'(S) = N12 - R4 (III30)

N(s)=N11—CS—‘T4 (111-31)



e Region 2: 1< s < 2l

t t
M(s) = —Nyzs + %5 + (Rs + Ra)s — Ral + (T5 + T4)‘2’

V(s) = N12 ot R3 - R4

N(S)lel—CS_T3—T4

¢ Region 3: 2/ < s < 3!

{
M(s) = —Nis+ Ss+(=Ro+ Ry + Ra)s + (2R - Rl + (T + Ta + Th)

~

I’P(S) = ./\’?12 - R: - R3 e R4

Ar(S)lel "CS—Tg—Tg—'T4

Therefore the bending energy in Equation (II1.22) can be written as

I = ! /l [—N —t R T. -t]z d
-+ + + S
b 2D11 0 128 2 s 43 42

2

1
2Dn

2l 1 {
/’ ["Nus + %5 + (R34 Ry)s — Ryl + (T5 + T4)§]

t
2

ds

10

(IT1.32)

(111.33)

(111.34)

(111.35)

(111.37)

1 i ct t .
+ —'°/ {—les + 35S + {‘Rs — 2Ry + Npp — a(]\’u - -’\21)] $

2Dy

21



t
+ 3R3+6R4—6N12+Z(N11—N21) l

t 2
+(T2+T3+T4)§} ds

Similarly for the shear energy

1 2!
H, = r/(le—R4)2dS+r/ (le-R3~R4)2d5
[ 1}

11

(I11.38)

3! ¢ 2
- r/;I [_2N” + Ry + 2Ry + 5(Nyy — Ny )| ds (II1.39)

21

where

The energy of exiensional loads can be expressed by

1 L 2
I, = 2‘411/;(]\11—03—T4) ds +

1 2§ "
sa ), (Mu—es—Ty—T.)ds
11

1 r3
+ / (N1 —cs =Ty — Ty — Ty)* ds (IIL.40)
2A11 2!

The energy stored in the elastic springs is written as

II = ——21+— [ R, 2R+ 2N, + N —t (]V N. )}2
k 9 3,2 2]\31 3 4 12 22 91 11 21
2“2 3 4 1 1 ! 2 12 21 11 21
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! R? T? T2 1 2
—2 + —T3—-T4—3cl - N N.
+ + — e + — %, 292 291 (-1 3 —Ts — 3¢ 12 + Ny

2k,
2 2 2
+ L, L I (I1L.41)
2g, 2g3 294

The complementary potential energy in Equations (IT1.38) through (II1.41) is ex-
=2,3,4) and ¢. By minimizing

pressed in terms of 6 unknowns, namely Ry, Ry, T; (
these expressions the following system of linear equations is obtained

t22 272
5212 31):,,2 (i+ﬂ)T3

LA T 1 DL L8
12D ' G, ¢ DT 2D™T\8D T g D g
9212 3l 5tl3 3 t31?

+ ( 3D +;) T, = 5D (Nu _J\'21)'L3—D(N11 Ny ) (II1.42)
3 28 1 4 1 3 2 6 t:
—ctlom Attt —+ = | Ry =+ =+ 2R+ T,

D¢ (3D+k1 k2+k3) 3 (21) o kz) ‘T
ﬁT .tﬁT_ 3_13_4_2_4_& N . 2N
Tt T\t Ty Mt
3 t ¢
(121) Tie 7&) (N1y — Nay) (1IL.43)
55 (38 2§ a4 9 1 st
2 = S R A el Lo >
5D € (2D+k +k2)R3+(D "R L4)R «topltgph
2N. 2
= (Nyy — Nyy) (1IL44)

2D T\D "k k)T E 6D



13

5t212+3l +t12R+tlzR+ t21+1 1 T, + 2l 1
8D ¢, ‘T ep™ 2D 4D 91+92 ?

(B Do Ey + (N = Vo) + (N = M) (I1L.45)
4D a1 4 — 2D 12 a 11 21 8D 11 21 .

212 3l tl? 512 2l 1 21 1 1

—_— - - —_— 4= — -+ =T
(D+g1)c+2DR3+4DR“+< + )T2+<2D+g_1 .gs) 3
2l 1 5t1% 1 2 .

+ (E + 9_1) Ty = E]\'u + g—l(Nn = Nap) + @(‘Nu — Ng) (1IL.46)

9¢212 3 t: 312 21l 1 2 1
’!‘ - - — Lty _| R "‘ . o - -
<8D gl)”-zDR 3 ( ,)T- (

— 4 — - — | Ty
2D 4D ¢ 2D 91) )
3t 1 1 32 1
— + =Ty =N, + —(Ny. — N
+<4D+gl+g4> +=ophn 91( 1 21)
2l -
+16D(N11—N21) (11141)

The concentrated normal and shear forces at the ply drop regions and the inter-
laminar shear in the resin filler are estimated by solving the simultaneous system of

equations in (III.42) through (II1.47) and using Equation (II1.26) through (II1.2%)




I11.3 3-D Transformation of Stiffnesses
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It has been determined that a three dimensional transformation of stiffnesses is

required in order to estimate the effective axial stiffness of the belt regions, Ag and

Apg). This is due to the belt layup and the orientation of the different belt portions

to the loading axis as shown in Figure II1.4.

The loading axis corresponds to axis 1 in the 123 coordinate system which is the

transformed system. The principal material coordinates are denoted by 1’2" and

1

3.

The stress-strain relationships in the principal material coordinates for an or-

thotropic laminate are given by

where

Q2
Qa3
Q12
Q1s
Qas
Qus
Qss
Qes

{7}ex1 = [Qlexs {€}exa

(1 = taar2 )V By

(1 — v31113)V By

(1~ v1ov)V B3y

(Va1 + vaavsy )V By = (112 + v13vs,)V Ey
(va1 + varvs2)V Eq = (113 + va3tns)V Ess
(Va2 + V12031 )V Eay = (v23 + v91113)V B3
Gas

Ga

Gz

(I11.48)

(IT11.1M
(I11.50)
(IIL.51)
(I11.52)
(I1L53)
(II1.54)
(I1L.55)
(I11.56)

(ITL37)
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Figure II1.4:
Vo= (1 = v1avs) — vz — V3113 — 214312313, ) "

(I1L.58)

The presence of angle plies in the belt region making an angle 6 in the 1'2'-plane

results in the following constitutive relationship

{7} =[Q]{}

(IIL.59)

where the transformed reduced stiffnesses 5,-]- are given in terms of reduced stiff-

nesses Q;; as

= 'Qu + 2¢%5%Qys + §%Qq + 4c252Q66
= 34Q11 + 2C."‘92Q12 + C4Q22 + 4C2$2Q66
= 2s7Qu + (' + §Y)Q1; + *s2Q4, — 4c25%Qy .

= 4c*s%Qy — 8¢%s*Qyy + 4’5 Qp + 4(c® s7)%Qes

(111.60)
(I1L.61)
(111.62)

(I11.63)
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Qx = Qus (I11.64)
Qi = Qus+5°Qn (I11.65)
Q@ = s°Qus+Qxn (111.66)
¢ = cosf
s = sinb

Any ply in the belt portion of the taper makes an angle § with the loading axis
if it is in the uncracked belt portion and an angle a if it is in the cracked belt
portion. By performing a rotation about the 2-axis, the stiffness along the loading

axis , takes the form
{o} =[CHe} (ITL.67)
where o;; and ¢;; are in 123-axis system and C; represent the elements of trans-

formed stiffness matrix in this coordinate system.

Since we have assumed
u(z, =) = U(z) (I11.68)
and
w =0 (111.69)

For plane stress condition in 1-3 plane (i.e. 0;, = 0 ; ¢ =1,2,3) stress strain

relations reduce to

o1 = (Cll — 032/022) €11 (IIITO)
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where

Cun = ©TQ, +28%3°Q3 +5°Qy; + 2570, (II1.71)
Ciz = Qy +35°Qp (I1I1.72)
Cn = Qyp (I1L.73)

where € and 5 are cosine and sine of the angle which the cracked and uncracked belt
portions makes with the loading axis.
The coefficient of €;; in Equation (III.70) represents the transformed axial stiff-

ness. This value is used in the derivation of Ag and Apg;.



